ANISOTROPIC OPTICAL POLARISABILITIES OF THE COMPLEXES $\mathrm{LCr}(\mathrm{CO})_{5}\left(\mathrm{~L}=\mathrm{PMe}_{3}, \mathrm{NMe}_{3}\right.$ or $\left.\mathrm{NH}_{3}\right)$: A STUDY OF $\boldsymbol{\pi}$-BACK-BONDING

M.J. ARONEY ${ }^{\star}$, M.K. COOPER, R.K. PIERENS and S.J. PRATTEN
Department of Inorganic Chemistry, University of Sydney, Sydney, N.S.W. 2006 (Australia)

(Received February 10th, 1986)

Abstract

Summary Dipole moments and electric birefringences are reported for the complexes $\mathrm{LCr}(\mathrm{CO})_{5}$ where L is $\mathrm{PMe}_{3}, \mathrm{NMe}_{3}$ or NH_{3}. Comparison of the molecular optical polarisability anisotropies of $\mathrm{PMe}_{3} \mathrm{Cr}(\mathrm{CO})_{5}$ and $\mathrm{NMe}_{3} \mathrm{Cr}(\mathrm{CO})_{5}$ shows a large enhancement of polarisability specifically in the $\mathrm{L}-\mathrm{Cr}$ - $(\operatorname{trans}) \mathrm{CO}$ direction for the phosphorus compound; the polarisabilities perpendicular to the symmetry axis are closely similar for the two complexes. The results are interpreted as direct evidence for a highly deformable π-component in $\mathrm{P}-\mathrm{Cr}$ bonding. This work presents a new experimental approach to the study of π-back-bonding.

Introduction

Metal to ligand π-bonding was originally invoked to account for the stability of complexes in which the metal is in a low formal oxidation state [1]. It was used to explain how negative charge, accumulated from ligand to metal σ-donation, could be delocalised away from the metal, and how strong overall bonds could be formed between metals and ligands of low basicity such as CO. The forward σ - and π-back-bonding were regarded as mutually reinforcing $[2,3]$. Though the concept has been widely applied, the reality and the extent of π-back-donation in metal-ligand bond formation remains a subject of great interest and controversy [1,2,4-13]. Many experimental techniques have been used to probe the validity or otherwise of back-donation, notably X-ray crystallographic determination of metal-ligand bond distances, dipole moments, vibrational, NMR and photoelectron spectroscopy; a substantive review is included in ref. 1. The investigations have given rise to conflicting results. Frequently experimental facts which have been interpreted as providing evidence for π-back-bonding, have subsequently been rationalised in a different or even opposite manner. Despite some deeper insight from recent theoretical [14-16] and photoelectron spectral [17,18] studies (which are generally consistent with the π-back-bonding scheme), current knowledge and understanding of metal-ligand π-charge transfer is limited and imperfect.

Ideally an experimental technique is needed which can probe the π-bonding system in comparative isolation from that of the σ-electrons. In this regard it was thought that a study of the directional optical polarisabilities of metal-ligand containing molecules might provide information relevant to this problem since it is known that in a multiple bonded system, electrons in π-molecular orbitals are more weakly bound and hence much more polarisable than electrons constrained in σ-bonds [19]. In this work, a comparative study is undertaken of the optical polarisabilities of the complexes $\mathrm{PMe}_{3} \mathrm{Cr}(\mathrm{CO})_{5}, \mathrm{NMe}_{3} \mathrm{Cr}(\mathrm{CO})_{5}$ and $\mathrm{NH}_{3} \mathrm{Cr}(\mathrm{CO})_{5}$, derived from electric birefringence measurements $[19,20]$, to explore whether such comparisons will reveal differences in electronic behaviour relatable to the π-acceptor potential of PMe_{3}.

Experimental

The complexes $\mathrm{PMe}_{3} \mathrm{Cr}(\mathrm{CO})_{5}$ and $\mathrm{NMe}_{3} \mathrm{Cr}(\mathrm{CO})_{5}$ were synthesised via the intermediate $\mathrm{THFCr}(\mathrm{CO})_{5}[21,22]$ which was prepared by the UV irradiation of a solution of $\mathrm{Cr}(\mathrm{CO})_{6}$ in oxygen-free tetrahydrofuran (THF). Repeated sublimation gave melting points of 60 and $76^{\circ} \mathrm{C}$, respectively, in agreement with literature values [22,23]. Cyclohexane was fractionated and stored over sodium; appropriate physical constants for the solvent are given in ref. 24.

Solute dipole moments μ and electric birefringences, the latter expressed as molar Kerr constants ${ }_{\mathrm{m}} K$, were determined at 298 K and for light of 589 nm . The apparatus, techniques of measurement, symbols and analysis of data have been described before [$20,24,25$]. Oxygen was removed from the solvent by saturating it with dry nitrogen. The preparation and handling of solutions were carried out under dry, inert $\left(\mathrm{N}_{2}\right)$ atmosphere. The results are summarised in Table 1 which also includes corresponding experimental quantities for $\mathrm{NH}_{3} \mathrm{Cr}(\mathrm{CO})_{5}$ in dioxane solution (quoted from ref. 26). ${ }^{1} \mathrm{H}$ NMR spectra were recorded using a Bruker WM 400 NMR spectrometer; TMS was used as internal reference.

Discussion

The electric dipole moments of the complexes $\mathrm{LCr}(\mathrm{CO})_{5}$ decrease with different ligands L in the order: $\mathrm{NH}_{3}>\mathrm{NMe}_{3}>\mathrm{PMe}_{3}$. Both NH_{3} and NMe_{3} function only as electron-donors so it is reasonable to expect that the dipole moment is directed from the ligand NH_{3} or NMe_{3}, towards the trans-CO group. According to the concept of π-back-bonding, replacement of one CO in $\mathrm{Cr}(\mathrm{CO})_{6}$ by NH_{3} or NMe_{3} should result in the trans-CO accepting more electron density from the chromium atom [2] and this would enhance the overall moments of $\mathrm{NH}_{3} \mathrm{Cr}(\mathrm{CO})_{5}$ and $\mathrm{NMe}_{3} \mathrm{Cr}(\mathrm{CO})_{5}$. The complex $\mathrm{PMe}_{3} \mathrm{Cr}(\mathrm{CO})_{5}$ has a dipole moment of 16.1×10^{-30} Cm which is slightly lower than the moment of $16.9 \times 10^{-30} \mathrm{Cm}$ found for $\mathrm{NMe}_{3} \mathrm{Cr}(\mathrm{CO})_{5}$. Comparison with the dipole moments of borane complexes: 16.8, 15.6-16.0, and $16.6\left(\times 10^{-30} \mathrm{Cm}\right)$ for $\mathrm{NH}_{3} \mathrm{BH}_{3}, \mathrm{NMe}_{3} \mathrm{BH}_{3}$ and $\mathrm{PMe}_{3} \mathrm{BH}_{3}$, respectively [27], suggests that in $\mathrm{PMe}_{3} \mathrm{Cr}(\mathrm{CO})_{5}$ the electron drift from P towards trans- CO is less than expected for a σ-bonding model alone. The sense of the molecular dipole vector is verified by studying the solvent dependence of the ${ }^{1} \mathrm{H}$ NMR chemical shifts: $\delta\left(\mathrm{C}_{6} \mathrm{D}_{12}\right) 1.44 \mathrm{ppm}$ and $\delta\left(\mathrm{C}_{6} \mathrm{D}_{6}\right) 0.72 \mathrm{ppm}$ for $\mathrm{PMe}_{3} \mathrm{Cr}(\mathrm{CO})_{5}$; $\delta\left(\mathrm{C}_{6} \mathrm{D}_{12}\right) 2.50 \mathrm{ppm}$ and $\delta\left(\mathrm{C}_{6} \mathrm{D}_{6}\right) 1.65 \mathrm{ppm}$ for $\mathrm{NMe}_{3} \mathrm{Cr}(\mathrm{CO})_{5}$. In each case the
TABLE 1
 NH_{3}) FROM MEASUREMENTS ${ }^{a}$ IN SOLUTION AT $T 298 \mathrm{~K}$ AND $\lambda 589 \mathrm{~nm}$

Solute	Solvent	$\alpha \epsilon_{1}$	β	γ	δ	$\begin{aligned} & { }_{\infty} P_{2} \\ & \left(\mathrm{~cm}^{3}\right) \end{aligned}$	$\begin{aligned} & R_{\mathrm{D}} \\ & \left(\mathrm{~cm}^{3}\right) \end{aligned}$	$\begin{aligned} & 10^{30} \mu^{b, c} \\ & (\mathrm{Cm}) \end{aligned}$	$\begin{aligned} & 10^{27}{ }^{27}\left({ }_{m} K_{2}\right)^{c, d} \\ & \left(\mathrm{~m}^{5} \mathrm{~V}^{-2} \mathrm{~mol}^{-1}\right) \end{aligned}$
$\mathrm{PMe}_{3} \mathrm{Cr}(\mathrm{CO})_{5}$	cyclohexane	7.76	0.377	0.061	-8.8	554	70.8	16.1 ± 0.2	-48 ± 4
$\mathrm{NMe}_{3} \mathrm{Cr}(\mathrm{CO})_{5}$	cyclohexane	9.08	0.355	0.053	-398	600	66.1	16.9 ± 0.1	-1505 ± 15
$\mathrm{NH}_{3} \mathrm{Cr}(\mathrm{CO})_{5}{ }^{\text {e }}$	dioxane	23.0	0.278	0.114	-943	834	54.6	20.5 ± 0.3	-2570 ± 78

${ }^{a}$ For each compound incremental changes in the relative permittivities, densities, refractive indices and Kerr constants ($\Delta \varepsilon, \Delta d, \Delta n$ and ΔB, respectively) were measured for a range of solutions having solute weight fractions w_{2}. Coefficients $\alpha \epsilon_{1}, \beta, \gamma$ and δ were derived from the measured quantities using the relations: $\alpha \epsilon_{1}=\Sigma \Delta \epsilon / \Sigma w_{2} ; \beta=\Sigma \Delta d / d_{1} \Sigma w_{2} ; \gamma=\Sigma \Delta n / n_{1} \Sigma w_{2} ; \delta=\Sigma \Delta B / b_{1} \Sigma w_{2}$. The subscripts 1 and 2 refer in turn to the solvent and solute. ${ }^{b}$ Dipole moments were derived on the basis that the molar distortion polarisation equals $1.05 R_{\mathrm{D}}{ }^{c}{ }^{c}$ Dipole moments and molar Kerr constants are given in SI units. The conversion factors from the electrostatic (c.g.s., e.s.u.) system are, respectively: $1 \mathrm{Cm}=0.2998 \times 10^{30} \mathrm{D}, 1 \mathrm{~m}^{5} \mathrm{~V}^{-2} \mathrm{~mol}^{-1}=0.8988 \times 10^{15}$ e.s.u. mol^{-1}. ${ }^{d}$ The term $\infty\left(\mathrm{m} K_{2}\right)$ refers to the solute molar Kerr constant at infinite dilution. ${ }^{e}$ Measured values for $\mathrm{NH}_{3} \mathrm{Cr}(\mathrm{CO})_{5}$ are quoted from ref. 26.

TABLE 2
MOLECULAR POLARISABILITY ANISOTROPIES $10^{40} \Gamma\left(\mathrm{Cm}^{2} \mathrm{~V}^{-1}\right)^{a}$ AND PRINCIPAL POLARISABILITIES $10^{40} b_{i}\left(\mathrm{Cm}^{2} \mathrm{~V}^{-1}\right)^{a}$ OF $\mathrm{PMe}_{3} \mathrm{Cr}(\mathrm{CO})_{5}, \mathrm{NMe}_{3} \mathrm{Cr}(\mathrm{CO})_{5}, \mathrm{NH}_{3} \mathrm{Cr}(\mathrm{CO})_{5}, \mathrm{Cr}(\mathrm{CO})_{6}$, $\mathrm{PMe}_{3}, \mathrm{NMe}_{3}$ AND NH ${ }_{3}$

Solute	Γ	b_{1}	$b_{2}=b_{3}$
$\mathrm{PMe}_{3} \mathrm{Cr}(\mathrm{CO})_{5}$	-0.2 ± 0.1	29.5 ± 0.1	29.7 ± 0.1
$\mathrm{NMe}_{3} \mathrm{Cr}(\mathrm{CO})_{5}$	-5.4 ± 0.1	24.1 ± 0.1	29.5 ± 0.1
$\mathrm{NH}_{3} \mathrm{Cr}(\mathrm{CO})_{5}$	-6.2 ± 0.5	18.8 ± 0.2	24.9 ± 0.4
$\mathrm{Cr}(\mathrm{CO})_{6}{ }^{b}$	0	22.7 ± 0.3	22.7 ± 0.3
$\mathrm{PMe}_{3}{ }^{c}{ }^{d}$	-0.7	10.3	11.05
$\mathrm{NMe}_{3}{ }^{d}$	-0.32 ± 0.05	8.31 ± 0.03	8.63 ± 0.02
$\mathrm{NH}_{3}{ }^{d}$	0.42 ± 0.09	2.68 ± 0.06	2.26 ± 0.03

${ }^{a}$ Expressed in SI units; the conversion factor to the c.g.s., e.s.u. system is: $1 \mathrm{Cm}^{2} \mathrm{~V}^{-1}=0.8988 \times 10^{16}$ $\mathrm{cm}^{3} .{ }^{b}$ Derived from the experimental $R_{\mathrm{D}}=51.4 \pm 0.6 \mathrm{~cm}^{3}$ [31]. ${ }^{c}$ From ref. $32 .{ }^{d}$ From ref. 33.
methyl proton resonances experience large upfield changes of chemical shift in the aromatic solvent: $\Delta \delta$, defined as $\delta\left(\mathrm{C}_{6} \mathrm{D}_{12}\right)-\delta\left(\mathrm{C}_{6} \mathrm{D}_{6}\right)$, is 0.72 ppm for $\mathrm{PMe}_{3} \mathrm{Cr}(\mathrm{CO})_{5}$ and 0.85 ppm for $\mathrm{NMe}_{3} \mathrm{Cr}(\mathrm{CO})_{5}$. The benzene shielding results from statistically favoured stereospecific attractive interactions between the benzene π-electrons and the electrophilic methyl protons located near the positive end of the solute dipole [28,29].

The experimental molar Kerr constants, unlike the dipole moments, differ greatly between the complexes $\mathrm{NMe}_{3} \mathrm{Cr}(\mathrm{CO})_{5}$ and $\mathrm{PMe}_{3} \mathrm{Cr}(\mathrm{CO})_{5}$. This reflects in most part a large difference in the molecular optical polarisability anisotropies Γ of the two compounds. Γ is defined as $b_{1}-b_{2}$, i.e. the difference between the molecular polarisability in the direction of the dipole axis 1 and the polarisability perpendicular to that axis [19]. From symmetry it follows that $b_{2}=b_{3} . \Gamma$ can be obtained from the molar Kerr constant using the Le Fèvre modified Langevin-Born equation (eq. 1) $[19,20]$.
${ }_{\mathrm{m}} K=\left(N / 405 k T \epsilon_{0}\right)\left[\left({ }_{\mathrm{D}} P /{ }_{\mathrm{E}} P\right) \Gamma^{2}+(k T)^{-1} \mu^{2} \Gamma\right]$
The terms ${ }_{\mathrm{D}} P,_{\mathrm{E}} P, N, k, T$ and ϵ_{0} refer, in turn, to the molar distortion polarisation, the molar electron polarisation, Avogadro's number, the Boltzmann constant, the absolute temperature and the permittivity of a vacuum. In each case ${ }_{\mathrm{E}} P$ was taken as $0.95 R_{\mathrm{D}}$, and the ratio ${ }_{\mathrm{D}} P /{ }_{\mathrm{E}} P$ as $1.1[20,30]$. Values of Γ for $\mathrm{PMe}_{3} \mathrm{Cr}(\mathrm{CO})_{5}$ and $\mathrm{NMe}_{3} \mathrm{Cr}(\mathrm{CO})_{5}$ are given in Table 2 together with the optical anisotropies of $\mathrm{NH}_{3} \mathrm{Cr}(\mathrm{CO})_{5}, \mathrm{Cr}(\mathrm{CO})_{6}, \mathrm{NMe}_{3}, \mathrm{PMe}_{3}$ and NH_{3}, which are included for comparison. Principal optical polarisabilities are also listed (columns 3 and 4); these were derived using Γ and the Lorentz-Lorenz relation (eq. 2) [24].
${ }_{\mathrm{E}} P=N\left(b_{1}+2 b_{2}\right) / 9 \epsilon_{0}$
The free ligands $\mathrm{L}\left(=\mathrm{PMe}_{3}, \mathrm{NMe}_{3}\right.$ and $\left.\mathrm{NH}_{3}\right)$ are near isotropically polarisable having small measured molecular polarisability anisotropies $10^{40} \Gamma\left(\mathrm{Cm}^{2} \mathrm{~V}^{-1}\right)$ of $-0.7,-0.32$ and 0.42 , respectively ${ }^{*}$. When coordinated with $\mathrm{Cr}(\mathrm{CO})_{5}$, however,

[^0]the resulting complexes $\mathrm{LCr}(\mathrm{CO})_{5}$ exhibit large differences in $10^{40} \Gamma\left(\mathrm{Cm}^{2} \mathrm{~V}^{-1}\right)$ between the amine complexes on the one hand (-5.4 and -6.2 for $\mathrm{L}=\mathrm{NMe}_{3}$ and NH_{3}) and the PMe_{3} complex on the other (-0.2). The differences so found are too great to be explained by possible anisotropy variations between the $\mathrm{PMe}_{3}, \mathrm{NMe}_{3}$ or NH_{3} fragments.

It has been shown that the tying up of P or N lone pair electrons in bond formation in $\mathrm{OPMe}_{3}, \mathrm{ONMe}_{3}$ and $\mathrm{BH}_{3} \mathrm{NMe}_{3}$ causes only small changes from the anisotropy of the molecules PMe_{3} or $\mathrm{NMe}_{3}: 10^{40} \Gamma\left(\mathrm{Cm}^{2} \mathrm{~V}^{-1}\right)$ is $-0.2,0.8$ and 0.1 for $\mathrm{OPMe}_{3}, \mathrm{ONMe}_{3}$ and $\mathrm{BH}_{3} \mathrm{NMe}_{3}[32,34]$. The reason for the gross disparity in Γ between the amine and phosphine complexes $\mathrm{LCr}(\mathrm{CO})_{5}$ is primarily to be found in the interaction of the P or N containing ligand with the $\mathrm{Cr}(\mathrm{CO})_{5}$ moiety.

The large negative Γ values for the amine complexes $\mathrm{NMe}_{3} \mathrm{Cr}(\mathrm{CO})_{5}$ and $\mathrm{NH}_{3} \mathrm{Cr}(\mathrm{CO})_{5}$ show that, in each case, the molecular polarisability along the dipole axis is substantially smaller than the polarisability within the plane of the four $\mathrm{Cr}-\mathrm{CO}$ groups. This clearly suggests that the $\mathrm{Cr}-\mathrm{CO}$ grouping is anisotropic and most polarisable along the bond direction. Further, it is possible, though it cannot be proved, that the polarisability would be enhanced along each trans $\mathrm{OC}-\mathrm{Cr}-\mathrm{CO}$ bond axis by electron delocalisation along that axis (according to the theory of π-back-bonding, carbonyl groups trans to each other share common metal orbitals in the formation of π-bonds and so the electrons can be expected to be extensively delocalised).

In contrast to the amine complexes, $\mathrm{PMe}_{3} \mathrm{Cr}(\mathrm{CO})_{5}$ is almost isotropically polarisable. The polarisability b_{1} for this complex is much greater than that of $\mathrm{NMe}_{3} \mathrm{Cr}(\mathrm{CO})_{5}$ while the polarisabilities in the 2 and 3 directions for the two complexes are virtually the same. Thus we see that bonding between the PMe_{3} and $\mathrm{Cr}(\mathrm{CO})_{5}$ fragments results in a very large enhancement of polarisability specifically along the $\mathrm{P}-\mathrm{Cr}-($ trans $) \mathrm{CO}$ axis, relative to that of the NMe_{3} analogue. This constitutes a fundamental difference in the electronic behaviour of these two complexes. Le Fèvre et al. [19,35-37] have shown that π-electrons are much more polarisable than the more tightly bound σ-electrons and that in delocalised electron systems, polarisability exaltations (corresponding to an enhanced degree of electron displacement in a perturbing field) will occur in the direction of the delocalisation pathway. The difference in b_{1} between the phosphorus and nitrogen complexes is too great to be explained by variation in the σ-characteristics of the $\mathrm{L}-\mathrm{Cr}$ bond, especially since the dipole moments of the two complexes are closely similar. Rather the results are clearly indicative of a highly deformable π-component of the phosphorus-chromium bond within the $\mathrm{P}-\mathrm{Cr}-($ trans $) \mathrm{CO}$ system, arising from overlaps primarily between chromium d and phosphorus π-acceptor orbitals, the latter of d and possibly σ^{\star} origin [15].

Acknowledgements

The authors gratefully acknowledge helpful discussions with Dr. P.E. Schipper and Dr. E. Magnusson.

References

1 L. Malatesta and S. Cenini, Zerovalent Compounds of Metals, Academic Press, London, 1974, Part 1. 2 J.E. Huheey, Inorganic Chemistry, 3rd edit. Harper International, Cambridge, 1983, pp. 429-438.

3 F.A. Cotton and G. Wilkinson, Advanced Inorganic Chemistry, 4th edit. Wiley-Interscience, New York, 1980, pp. 81-90.
4 R.G. Wilkins, Quart. Rev., 16 (1962) 316.
5 R.J. Angelici and M.D. Malone, Inorg. Chem., 6 (1967) 1731.
6 L.M. Venanzi, Chem. Brit., 4 (1968) 162.
7 L.D. Pettit, Quart. Rev., 25 (1971) 1.
8 P.M. Maitlis, The Organic Chemistry of Palladium, Academic Press, New York, 1971, Vol. 1 pp. 7-9.
9 F.A. Cotton, W.T. Edwards, F.C. Rauch, M.A. Graham, R.N. Perutz and J.J. Turner, J. Coord. Chem., 2 (1973) 247.
10 N.S. Hush and M.L. Williams, J. Mol. Spectrosc., 50 (1974) 349.
11 R. Mason and D.W. Meek, Angew. Chem. Int. Ed. Engl., 17 (1978) 183.
12 J.W. Davenport, Chem. Phys. Lett., 77 (1981) 45.
13 A. Holladay, M.R. Churchill, A. Wong and J.D. Atwood, Inorg. Chem., 19 (1980) 2195.
14 C.W. Bauschlicher and P.S. Bagus, J. Chem. Phys., 81 (1984) 5889.
15 D.S. Marynick, J. Am. Chem. Soc., 106 (1984) 4064.
16 R. Arratia-Perez and C.Y. Yang, J. Chem. Phys., 83 (1985) 4005.
17 L.W. Yarbrough and M.B. Hall, Inorg. Chem., 17 (1978) 2269.
18 J.L. Hubbard and D.L. Lichtenberger, J. Am. Chem. Soc., 104 (1982) 2132.
19 R.J.W. Le Fèvre, Adv. Phys. Org. Chem., 3 (1965) 1.
20 C.G. Le Fèvre and R.J.W. Le Fèvre, Rev. Pure Appl. Chem. (Aust.), 5 (1955) 261.
21 W. Strohmeier and F. Müller, Chem. Ber., 100 (1967) 2812.
22 W. Strohmeier and F. Müller, Chem. Ber., 102 (1969) 3608.
23 W. Strohmeier, J.F. Guttenberger, H. Blumenthal and G. Albert, Chem. Ber., 99 (1966) 3419.
24 C.G. Le Fèvre and R.J.W. Le Fèvre in A. Weissberger (Ed.), Techniques of Chemistry, Wiley-Interscience, New York, Vol. 1, Part IIIC, 1972.
25 R.J.W. Le Fèvre, Dipole Moments, Methuen, London, 1953.
26 J. Marshman, B.Sc. Honours Thesis, University of Sydney, 1981.
27 A.L. McClellan, Tables of Experimental Dipole Moments, Rahara, El Cerrito, 1974, Vol. 2.
28 R.S. Armstrong, M.J. Aroney, R.K. Duffin, H.J. Stootman and R.J.W. Le Fèvre, J. Chem. Soc., Perkin Trans. II, (1973) 1272.
29 E.M. Engler and P. Laszlo, J. Am. Chem. Soc., 93 (1971) 1317.
30 M.J. Aroney, Angew. Chem. Int. Ed. Engl., 16 (1977) 663.
31 S.J. Pratten, Ph.D. Thesis, University of Sydney, 1985.
32 R.S. Armstrong, M.J. Aroney, R.J.W. Le Fèvre, R.K. Pierens, J.D. Saxby and C.J. Wilkins, J. Chem. Soc. (A), (1969) 2735.
33 R.S. Armstrong, M.J. Aroney, K.E. Calderbank and R.K. Pierens, Aust. J. Chem., 30 (1977) 1411.
34 R.S. Armstrong, G.J. Peacock, K.R. Skamp and R.J.W. Le Fèvre, J. Chem. Soc., Dalton Trans., (1973) 1132.

35 R. Bramley and R.J.W. Le Fèvre, J. Chem. Soc., (1960) 1820.
36 M.J. Aroncy, K.E. Calderbank, R.J.W. Le Fèvre and R.K. Pierens, J. Chem. Soc. B., (1969) 159.
37 M.J. Aroney, K.E. Calderbank, R.J.W. Le Fèvre, and R.K. Pierens, J. Chem. Soc. B., (1970) 1120.

[^0]: * The molecular Γ values for the free ligands L would include small anisotropy contributions from the P or N lone pair electrons; this does not detract from the subseqent interpretation.

