Journal of Organometallic Chemistry, 309 (1986) 293-298 Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands

ANISOTROPIC OPTICAL POLARISABILITIES OF THE COMPLEXES LCr(CO)₅ (L = PMe₃, NMe₃ or NH₃): A STUDY OF π -BACK-BONDING

M.J. ARONEY*, M.K. COOPER, R.K. PIERENS and S.J. PRATTEN Department of Inorganic Chemistry, University of Sydney, Sydney, N.S.W. 2006 (Australia) (Received February 10th, 1986)

Summary

Dipole moments and electric birefringences are reported for the complexes $LCr(CO)_5$ where L is PMe₃, NMe₃ or NH₃. Comparison of the molecular optical polarisability anisotropies of PMe₃Cr(CO)₅ and NMe₃Cr(CO)₅ shows a large enhancement of polarisability specifically in the L-Cr-(*trans*)CO direction for the phosphorus compound; the polarisabilities perpendicular to the symmetry axis are closely similar for the two complexes. The results are interpreted as direct evidence for a highly deformable π -component in P-Cr bonding. This work presents a new experimental approach to the study of π -back-bonding.

Introduction

Metal to ligand π -bonding was originally invoked to account for the stability of complexes in which the metal is in a low formal oxidation state [1]. It was used to explain how negative charge, accumulated from ligand to metal σ -donation, could be delocalised away from the metal, and how strong overall bonds could be formed between metals and ligands of low basicity such as CO. The forward σ - and π -back-bonding were regarded as mutually reinforcing [2,3]. Though the concept has been widely applied, the reality and the extent of π -back-donation in metal-ligand bond formation remains a subject of great interest and controversy [1,2,4-13]. Many experimental techniques have been used to probe the validity or otherwise of back-donation, notably X-ray crystallographic determination of metal-ligand bond distances, dipole moments, vibrational, NMR and photoelectron spectroscopy; a substantive review is included in ref. 1. The investigations have given rise to conflicting results. Frequently experimental facts which have been interpreted as providing evidence for π -back-bonding, have subsequently been rationalised in a different or even opposite manner. Despite some deeper insight from recent theoretical [14-16] and photoelectron spectral [17,18] studies (which are generally consistent with the π -back-bonding scheme), current knowledge and understanding of metal-ligand π -charge transfer is limited and imperfect.

Ideally an experimental technique is needed which can probe the π -bonding system in comparative isolation from that of the σ -electrons. In this regard it was thought that a study of the directional optical polarisabilities of metal-ligand containing molecules might provide information relevant to this problem since it is known that in a multiple bonded system, electrons in π -molecular orbitals are more weakly bound and hence much more polarisable than electrons constrained in σ -bonds [19]. In this work, a comparative study is undertaken of the optical polarisabilities of the complexes PMe₃Cr(CO)₅, NMe₃Cr(CO)₅ and NH₃Cr(CO)₅, derived from electric birefringence measurements [19,20], to explore whether such comparisons will reveal differences in electronic behaviour relatable to the π -acceptor potential of PMe₃.

Experimental

The complexes $PMe_3Cr(CO)_5$ and $NMe_3Cr(CO)_5$ were synthesised via the intermediate THFCr(CO)_5 [21,22] which was prepared by the UV irradiation of a solution of $Cr(CO)_6$ in oxygen-free tetrahydrofuran (THF). Repeated sublimation gave melting points of 60 and 76°C, respectively, in agreement with literature values [22,23]. Cyclohexane was fractionated and stored over sodium; appropriate physical constants for the solvent are given in ref. 24.

Solute dipole moments μ and electric birefringences, the latter expressed as molar Kerr constants _mK, were determined at 298 K and for light of 589 nm. The apparatus, techniques of measurement, symbols and analysis of data have been described before [20,24,25]. Oxygen was removed from the solvent by saturating it with dry nitrogen. The preparation and handling of solutions were carried out under dry, inert (N₂) atmosphere. The results are summarised in Table 1 which also includes corresponding experimental quantities for NH₃Cr(CO)₅ in dioxane solution (quoted from ref. 26). ¹H NMR spectra were recorded using a Bruker WM 400 NMR spectrometer; TMS was used as internal reference.

Discussion

The electric dipole moments of the complexes $LCr(CO)_{5}$ decrease with different ligands L in the order: $NH_3 > NMe_3 > PMe_3$. Both NH_3 and NMe_3 function only as electron-donors so it is reasonable to expect that the dipole moment is directed from the ligand NH₃ or NMe₃, towards the trans-CO group. According to the concept of π -back-bonding, replacement of one CO in Cr(CO)₆ by NH₃ or NMe₃ should result in the trans-CO accepting more electron density from the chromium atom [2] and this would enhance the overall moments of $NH_3Cr(CO)_5$ and NMe₃Cr(CO)₅. The complex PMe₃Cr(CO)₅ has a dipole moment of 16.1×10^{-30} Cm which is slightly lower than the moment of 16.9×10^{-30} Cm found for NMe₃Cr(CO)₅. Comparison with the dipole moments of borane complexes: 16.8, 15.6-16.0, and 16.6 ($\times 10^{-30}$ Cm) for NH₃BH₃, NMe₃BH₃ and PMe₃BH₃, respectively [27], suggests that in PMe₃Cr(CO)₅ the electron drift from P towards trans-CO is less than expected for a σ -bonding model alone. The sense of the molecular dipole vector is verified by studying the solvent dependence of the ¹H NMR chemical shifts: $\delta(C_6 D_{12})$ 1.44 ppm and $\delta(C_6 D_6)$ 0.72 ppm for PMe₃Cr(CO)₅; $\delta(C_6 D_{12})$ 2.50 ppm and $\delta(C_6 D_6)$ 1.65 ppm for NMe₃Cr(CO)₅. In each case the

TABLE 1

õ	
NWe	
PN -	
Ŀ	
õ	
5 J	
ESL	
LEX	
MP	
8	
S OI	
L'	
21 ST	
õ	
ERR	
R KI	
Z	
ž	E
	6
≁.	õ
ITS A	N 58
MENTS A	AND X 58
MOMENTS A	K AND X 58
DLE MOMENTS A	" 298 K AND À 58
DIPOLE MOMENTS A	AT T 298 K AND À 58
VS, DIPOLE MOMENTS A	DN AT T 298 K AND A 58
TIONS, DIPOLE MOMENTS A	UTION AT T 298 K AND À 58
VACTIONS, DIPOLE MOMENTS A	SOLUTION AT T 298 K AND À 58
REFRACTIONS, DIPOLE MOMENTS A	IN SOLUTION AT T 298 K AND À 58
VD REFRACTIONS, DIPOLE MOMENTS AND MOLAR KERR CONSTANTS OF COMPLEXES LCr(CO)5 (L = PMe3, NMe3, or	TS a IN SOLUTION AT T 298 K AND À 589 nm
S AND REFRACTIONS, DIPOLE MOMENTS A	r A
IS AND	r A
IS AND	r A
IS AND	I MEASUREMENTS " IN SOLUTION AT T 298 K AND À 58
IS AND	MEASUREMENTS
IS AND	MEASUREMENTS
MOLAR POLARISATIONS AND REFRACTIONS, DIPOLE MOMENTS A	r A

Solute	Solvent	αεΊ	8	٨	Ś	${}^{\infty}_{(\mathrm{cm}^3)}P_2$	$R_{\rm D}^{({\rm cm}^3)}$	10 ³⁰ µ ^{b,c} (Cm)	$\frac{10^{27}}{m^5} \frac{M_2}{v^{-2}} \frac{c.d}{mol^{-1}}$
PMe ₃ Cr(CO) ₅	cyclohexane	7.76	0.377	0.061	- 8.8	554	70.8	16.1 ± 0.2	-48 ± 4
NMe ₃ Cr(CO) ₅	cyclohexane	9.08	0.355	0.053	- 398	600	66.1	16.9 ± 0.1	-1505 ± 15
NH ₃ Cr(CO) ₅	dioxane	23.0	0.278	0.114	- 943	834	54.6	20.5 ± 0.3	-2570 ± 78

 $\alpha e_1 = \Sigma \Delta e / \Sigma w_2$; $\beta = \Sigma \Delta d / d_1 \Sigma w_2$; $\gamma = \Sigma \Delta n / n_1 \Sigma w_2$; $\delta = \Sigma \Delta B / b_1 \Sigma w_2$. The subscripts 1 and 2 refer in turn to the solvent and solute. ^b Dipole moments were derived on the basis that the molar distortion polarisation equals 1.05 R_D.^c Dipole moments and molar Kerr constants are given in SI units. The conversion factors from the electrostatic (e.g.s., e.s.u.) system are, respectively: 1 Cm = 0.2998 \times 10^{30} D, 1 m⁵ V⁻² mol⁻¹ = 0.8988 \times 10^{15} e.s.u. mol^{-1.4} The term $\alpha (mK_2)$ refers to the solute ^a For each compound incremental changes in the relative permittivities, densities, refractive indices and Kerr constants (Δt , Δd , Δn and ΔB , respectively) were measured for a range of solutions having solute weight fractions w_2 . Coefficients α_{c_1} , β , γ and δ were derived from the measured quantities using the relations: molar Kerr constant at infinite dilution. " Measured values for NH₃Cr(CO)₅ are quoted from ref. 26.

TABLE 2

MOLECULAR POLARISABILITY ANISOTROPIES $10^{40}\Gamma$ (Cm² V⁻¹) ^{*a*} AND PRINCIPAL POLARISABILITIES $10^{40}b_i$ (Cm² V⁻¹) ^{*a*} OF PMe₃Cr(CO)₅, NMe₃Cr(CO)₅, NH₃Cr(CO)₅, Cr(CO)₆, PMe₃, NMe₃ AND NH₃

Solute	Г	<i>b</i> ₁	$b_2 = b_3$
PMe ₃ Cr(CO) ₅	-0.2 ± 0.1	29.5 ±0.1	29.7 ±0.1
NMe ₃ Cr(CO) ₅	-5.4 ± 0.1	24.1 ± 0.1	29.5 ± 0.1
NH ₃ Cr(CO),	-6.2 ± 0.5	18.8 ± 0.2	24.9 ± 0.4
Cr(CO) ₆ ^b	Ó	22.7 ± 0.3	22.7 ± 0.3
PMe,	-0.7	10.3	11.0,
NMe ₃ ^d	-0.32 ± 0.05	8.31 ± 0.03	8.63 ± 0.02
NH	0.42 ± 0.09	2.68 ± 0.06	2.26 ± 0.03

^a Expressed in SI units; the conversion factor to the c.g.s., e.s.u. system is: $1 \text{ Cm}^2 \text{ V}^{-1} = 0.8988 \times 10^{16} \text{ cm}^3$. ^b Derived from the experimental $R_D = 51.4 \pm 0.6 \text{ cm}^3$ [31]. ^c From ref. 32. ^d From ref. 33.

methyl proton resonances experience large upfield changes of chemical shift in the aromatic solvent: $\Delta\delta$, defined as $\delta(C_6D_{12}) - \delta(C_6D_6)$, is 0.72 ppm for PMe₃Cr(CO)₅ and 0.85 ppm for NMe₃Cr(CO)₅. The benzene shielding results from statistically favoured stereospecific attractive interactions between the benzene π -electrons and the electrophilic methyl protons located near the positive end of the solute dipole [28,29].

The experimental molar Kerr constants, unlike the dipole moments, differ greatly between the complexes NMe₃Cr(CO)₅ and PMe₃Cr(CO)₅. This reflects in most part a large difference in the molecular optical polarisability anisotropies Γ of the two compounds. Γ is defined as $b_1 - b_2$, i.e. the difference between the molecular polarisability in the direction of the dipole axis 1 and the polarisability perpendicular to that axis [19]. From symmetry it follows that $b_2 = b_3$. Γ can be obtained from the molar Kerr constant using the Le Fèvre modified Langevin-Born equation (eq. 1) [19,20].

$${}_{\mathrm{m}}K = (N/405kT\epsilon_0) \left[\left({}_{\mathrm{D}}P/{}_{\mathrm{E}}P \right) \Gamma^2 + \left(kT \right)^{-1} \mu^2 \Gamma \right]$$
(1)

The terms $_{\rm D}P$, $_{\rm E}P$, N, k, T and ϵ_0 refer, in turn, to the molar distortion polarisation, the molar electron polarisation, Avogadro's number, the Boltzmann constant, the absolute temperature and the permittivity of a vacuum. In each case $_{\rm E}P$ was taken as 0.95 $R_{\rm D}$, and the ratio $_{\rm D}P/_{\rm E}P$ as 1.1 [20,30]. Values of Γ for PMe₃Cr(CO)₅ and NMe₃Cr(CO)₅ are given in Table 2 together with the optical anisotropies of NH₃Cr(CO)₅, Cr(CO)₆, NMe₃, PMe₃ and NH₃, which are included for comparison. Principal optical polarisabilities are also listed (columns 3 and 4); these were derived using Γ and the Lorentz–Lorenz relation (eq. 2) [24].

$$_{\rm E}P = N(b_1 + 2b_2)/9\epsilon_0 \tag{2}$$

The free ligands L (= PMe₃, NMe₃ and NH₃) are near isotropically polarisable having small measured molecular polarisability anisotropies $10^{40} \Gamma$ (Cm² V⁻¹) of -0.7, -0.32 and 0.42, respectively *. When coordinated with Cr(CO)₅, however,

^{*} The molecular Γ values for the free ligands L would include small anisotropy contributions from the P or N lone pair electrons; this does not detract from the subsequent interpretation.

the resulting complexes LCr(CO)₅ exhibit large differences in $10^{40}\Gamma$ (Cm² V⁻¹) between the amine complexes on the one hand (-5.4 and -6.2 for L = NMe₃ and NH₃) and the PMe₃ complex on the other (-0.2). The differences so found are too great to be explained by possible anisotropy variations between the PMe₃, NMe₃ or NH₃ fragments.

It has been shown that the tying up of P or N lone pair electrons in bond formation in OPMe₃, ONMe₃ and BH₃NMe₃ causes only small changes from the anisotropy of the molecules PMe₃ or NMe₃: $10^{40}\Gamma$ (Cm² V⁻¹) is -0.2, 0.8 and 0.1 for OPMe₃, ONMe₃ and BH₃NMe₃ [32,34]. The reason for the gross disparity in Γ between the amine and phosphine complexes LCr(CO)₅ is primarily to be found in the interaction of the P or N containing ligand with the Cr(CO)₅ moiety.

The large negative Γ values for the amine complexes NMe₃Cr(CO)₅ and NH₃Cr(CO)₅ show that, in each case, the molecular polarisability along the dipole axis is substantially smaller than the polarisability within the plane of the four Cr-CO groups. This clearly suggests that the Cr-CO grouping is anisotropic and most polarisable along the bond direction. Further, it is possible, though it cannot be proved, that the polarisability would be enhanced along each *trans* OC-Cr-CO bond axis by electron delocalisation along that axis (according to the theory of π -back-bonding, carbonyl groups *trans* to each other share common metal orbitals in the formation of π -bonds and so the electrons can be expected to be extensively delocalised).

In contrast to the amine complexes, PMe₃Cr(CO)₅ is almost isotropically polarisable. The polarisability b_1 for this complex is much greater than that of NMe₃Cr(CO)₅ while the polarisabilities in the 2 and 3 directions for the two complexes are virtually the same. Thus we see that bonding between the PMe₃ and Cr(CO), fragments results in a very large enhancement of polarisability specifically along the P-Cr-(trans)CO axis, relative to that of the NMe₃ analogue. This constitutes a fundamental difference in the electronic behaviour of these two complexes. Le Fèvre et al. [19,35–37] have shown that π -electrons are much more polarisable than the more tightly bound σ -electrons and that in delocalised electron systems, polarisability exaltations (corresponding to an enhanced degree of electron displacement in a perturbing field) will occur in the direction of the delocalisation pathway. The difference in b_1 between the phosphorus and nitrogen complexes is too great to be explained by variation in the σ -characteristics of the L-Cr bond, especially since the dipole moments of the two complexes are closely similar. Rather the results are clearly indicative of a highly deformable π -component of the phosphorus-chromium bond within the P-Cr-(trans)CO system, arising from overlaps primarily between chromium d and phosphorus π -acceptor orbitals, the latter of d and possibly σ^* origin [15].

Acknowledgements

The authors gratefully acknowledge helpful discussions with Dr. P.E. Schipper and Dr. E. Magnusson.

References

- 1 L. Malatesta and S. Cenini, Zerovalent Compounds of Metals, Academic Press, London, 1974, Part 1.
- 2 J.E. Huheey, Inorganic Chemistry, 3rd edit. Harper International, Cambridge, 1983, pp. 429-438.

- 3 F.A. Cotton and G. Wilkinson, Advanced Inorganic Chemistry, 4th edit. Wiley-Interscience, New York, 1980, pp. 81-90.
- 4 R.G. Wilkins, Quart. Rev., 16 (1962) 316.
- 5 R.J. Angelici and M.D. Malone, Inorg. Chem., 6 (1967) 1731.
- 6 L.M. Venanzi, Chem. Brit., 4 (1968) 162.
- 7 L.D. Pettit, Quart. Rev., 25 (1971) 1.
- 8 P.M. Maitlis, The Organic Chemistry of Palladium, Academic Press, New York, 1971, Vol. 1 pp. 7-9.
- 9 F.A. Cotton, W.T. Edwards, F.C. Rauch, M.A. Graham, R.N. Perutz and J.J. Turner, J. Coord. Chem., 2 (1973) 247.
- 10 N.S. Hush and M.L. Williams, J. Mol. Spectrosc., 50 (1974) 349.
- 11 R. Mason and D.W. Meek, Angew. Chem. Int. Ed. Engl., 17 (1978) 183.
- 12 J.W. Davenport, Chem. Phys. Lett., 77 (1981) 45.
- 13 A. Holladay, M.R. Churchill, A. Wong and J.D. Atwood, Inorg. Chem., 19 (1980) 2195.
- 14 C.W. Bauschlicher and P.S. Bagus, J. Chem. Phys., 81 (1984) 5889.
- 15 D.S. Marynick, J. Am. Chem. Soc., 106 (1984) 4064.
- 16 R. Arratia-Perez and C.Y. Yang, J. Chem. Phys., 83 (1985) 4005.
- 17 L.W. Yarbrough and M.B. Hall, Inorg. Chem., 17 (1978) 2269.
- 18 J.L. Hubbard and D.L. Lichtenberger, J. Am. Chem. Soc., 104 (1982) 2132.
- 19 R.J.W. Le Fèvre, Adv. Phys. Org. Chem., 3 (1965) 1.
- 20 C.G. Le Fèvre and R.J.W. Le Fèvre, Rev. Pure Appl. Chem. (Aust.), 5 (1955) 261.
- 21 W. Strohmeier and F. Müller, Chem. Ber., 100 (1967) 2812.
- 22 W. Strohmeier and F. Müller, Chem. Ber., 102 (1969) 3608.
- 23 W. Strohmeier, J.F. Guttenberger, H. Blumenthal and G. Albert, Chem. Ber., 99 (1966) 3419.
- 24 C.G. Le Fèvre and R.J.W. Le Fèvre in A. Weissberger (Ed.), Techniques of Chemistry, Wiley-Interscience, New York, Vol. 1, Part IIIC, 1972.
- 25 R.J.W. Le Fèvre, Dipole Moments, Methuen, London, 1953.
- 26 J. Marshman, B.Sc. Honours Thesis, University of Sydney, 1981.
- 27 A.L. McClellan, Tables of Experimental Dipole Moments, Rahara, El Cerrito, 1974, Vol. 2.
- 28 R.S. Armstrong, M.J. Aroney, R.K. Duffin, H.J. Stootman and R.J.W. Le Fèvre, J. Chem. Soc., Perkin Trans. II, (1973) 1272.
- 29 E.M. Engler and P. Laszlo, J. Am. Chem. Soc., 93 (1971) 1317.
- 30 M.J. Aroney, Angew. Chem. Int. Ed. Engl., 16 (1977) 663.
- 31 S.J. Pratten, Ph.D. Thesis, University of Sydney, 1985.
- 32 R.S. Armstrong, M.J. Aroney, R.J.W. Le Fèvre, R.K. Pierens, J.D. Saxby and C.J. Wilkins, J. Chem. Soc. (A), (1969) 2735.
- 33 R.S. Armstrong, M.J. Aroney, K.E. Calderbank and R.K. Pierens, Aust. J. Chem., 30 (1977) 1411.
- 34 R.S. Armstrong, G.J. Peacock, K.R. Skamp and R.J.W. Le Fèvre, J. Chem. Soc., Dalton Trans., (1973) 1132.
- 35 R. Bramley and R.J.W. Le Fèvre, J. Chem. Soc., (1960) 1820.
- 36 M.J. Aroney, K.E. Calderbank, R.J.W. Le Fèvre and R.K. Pierens, J. Chem. Soc. B., (1969) 159.
- 37 M.J. Aroney, K.E. Calderbank, R.J.W. Le Fèvre, and R.K. Pierens, J. Chem. Soc. B., (1970) 1120.